
T3

T5

T1

T4

T6

T2

Y12
To revise effectively for A-level Computer Science, focus on understanding core concepts

like data types, algorithms, and Boolean algebra. Practice solving problems, especially

coding tasks and binary/hexadecimal conversions. Use past papers to familiarise yourself

with exam patterns and timing. Create concise notes and diagrams for topics like logic

gates and data structures. Regularly review and test yourself, emphasising weaker areas,

to build confidence and retention.

Review and Revise

Key computing-related legislation includes the Data Protection Act 1998,

protecting personal data; the Computer Misuse Act 1990, addressing

unauthorised access; the Copyright Design and Patents Act 1988,

safeguarding intellectual property; and the Regulation of Investigatory

Powers Act 2000, governing surveillance. Moral and ethical issues include

workforce automation, AI, environmental impact, censorship, data privacy,

piracy, and design considerations like layout and cultural inclusivity.

Legal Moral Cultural Ethical

Data Types And Structures

Exchanging Data

SWare + SWare Devel

Processors + I O P Devices

Primitive data types (integer, real, character, string, Boolean), binary and
hexadecimal conversions, binary arithmetic, and character
representation (ASCII, Unicode). Also exploring data structures (arrays,
linked lists, trees, graphs, stacks, queues) and their manipulation.
Additionally, developing an understanding of Boolean algebra, including
logic gates, truth tables, and simplification using Karnaugh maps and De
Morgan's laws, as well as D flip-flops and adders.

Computer Science

Looking at concepts in computer science, including compression techniques
(lossy/lossless, run-length, and dictionary coding), encryption
(symmetric/asymmetric), and hashing applications. It explores relational
databases, keys, normalisation (3NF), SQL, and transaction processing (ACID
principles). Networking topics cover protocols, internet structure, security,
and hardware. Web technologies focus on HTML, CSS, JavaScript, search
engine indexing, the PageRank algorithm, and server/client-side processing.

The purpose and functions of operating systems, memory
management, interrupts, scheduling methods, and types of operating
systems. Also looking at software concepts such as BIOS, device drivers,
virtual machines, and application generation, including translators and
utilities. Software development methodologies, programming
paradigms, procedural and object-oriented languages, assembly
language, and memory addressing modes are also discussed, along with
their applications and merits.

Processor architecture and performance covering the structure and function of
the processor, including the ALU, control unit, registers, and buses, as well as the
fetch-decode-execute cycle and factors like clock speed, cores, cache, and
pipelining. Distinguishing between CISC and RISC processors, GPUs, and
multicore systems. As well as exploring different input/output devices, storage
types, RAM, ROM, and virtual storage solutions and their specific uses.

T h e o r e t i c a l C o n c e p t s

T3

T5

T1

T4

T6

T2

Y12
The is the second part of the coursework and focuses on planning robust,
scalable solutions before coding. Learning how to visualise system
architecture, define clear inputs/outputs, and refine data structures.
Developing user-friendly interfaces, creating maintainable solutions.
Thorough design documents and diagrams facilitate efficient project
management, ensuring the final product meets its specifications, fosters
strong problem-solving skills, and supports collaboration in software
development.

Coursework - DESIGN

The first part of the 20% coursework component, focuses on accurately identifying
problems, requirements, and constraints. By gathering and interpreting relevant
data, it will be possible to refine design decisions and explore potential solutions.
This rigorous approach ensures clarity, fosters structured development, and
validates feasibility. Mastering analysis techniques cultivates a deeper problem-
solving mindset, empowering learners to craft robust systems that effectively
address real-world needs and meet specification criteria thoroughly.

Coursework - ANALYSIS

OOP & GUI Python Skills

HTML CSS and JAVA SCRIPT

CLI Python Basics

Assembly Language LMC

OOP in Python fosters robust, maintainable code structures, aligning with
advanced programming modules within the a-level course combining
theoretical concepts with practical skills. Integrating Tkinter GUIs helps
visualisation of program flow and user interactions, applying object-
oriented principles in a tangible context. These skills encourage problem-
solving, nurtures design thinking, and increases employability. By
building interactive applications, you solidify computational concepts and
enhance professional readiness for further career opportunities.

Computer Science

Practical coverage of HTML, CSS, and JavaScript facilitates the creation of
interactive web solutions. Learning to structure pages with HTML, style them
with CSS, and add dynamic features using JavaScript. Through designing and
debugging projects, learners gain valuable, crucial problem-solving skills. This
hands-on experience forms a strong foundation for contemporary computing,
bridging theoretical concepts and real-world applications. Supporting the
ability to effectively answer questions on this topic in the theory paper 1.

Mastering fundamental Python concepts via the command line—like
input/output operations, basic SQLite usage, and function creation—
provides a solid programming foundation. A hands-on approach encourages
problem-solving, enhances debugging skills, and deepens understanding of
code flow. Building real-world applications with these basics prepares for
confidently tackling coursework tasks and explore advanced programming
concepts with clarity and competence. It also fosters critical, analytical
thinking.

LMC (Little Man Computer) is a simplified variation of assembly language and
provides a model of a CPU that greatly helps with the understanding of assembly
language fundamentals. It reinforces the theory concepts of registers, instruction
sets, and the fetch-decode-execute cycle. By writing and debugging basic assembly
programs, you gain insights into low-level operations, bridging the gap between
hardware and higher-level coding, thus strengthening your overall computational
understanding.

P r a c t i c a l S k i l l s

T3

T5

T1

T4

T6

T2

Y13

To revise effectively for A-level Computer Science, focus on understanding

core concepts like data types, algorithms, and Boolean algebra. Practice

solving problems, especially coding tasks and binary/hexadecimal

conversions. Use past papers to familiarise yourself with exam patterns and

timing. Create concise notes and diagrams for topics like logic gates and

data structures. Regularly review and test yourself, emphasising weaker

areas, to build confidence and retention.

Review and Revise

Practice Papers

Standard Algorithms

Problems & Programming

Computational Thinking

Practicing exam papers is vital for A-level success. By attempting past and
sample exams, the opportunity to improve and to tackle diverse question
formats and difficulties is afforded. Timed drills hone crucial time
management skills, while repeated exposure to exam structures fosters
confidence. Identifying recurring topics and refining exam techniques
ensures learners are better prepared to showcase their knowledge,
ultimately boosting performance and enhancing overall grades in high-
stakes assessments.

Computer Science

Understanding algorithm analysis, design, and complexity is crucial for in
computer Science allowing for the selection of optimal data structures and
approaches for varying tasks. Using Big O notation to measure execution
time and memory usage fosters better decision-making when developing
solutions. Mastering algorithms—like sorting, searching, and pathfinding—
cultivates core problem-solving skills, enabling the tackling of real-world
programming challenges effectively, ensuring success in advanced
computing modules and beyond.

Looking at fundamental programming constructs (sequence, iteration,
branching), comparing recursion vs iteration, addresses scoping
through global and local variables, promoting modular design with
parameter passing, and uses an IDE and OOP principles. Highlighting
key computational methods: problem recognition, decomposition,
divide-and-conquer, and abstraction. Applying backtracking, data
mining, heuristics, performance modelling, pipelining, and visualisation
to efficiently tackle computationally solvable problems.

Outlines core computational thinking concepts. Abstraction addresses simplifying
complexities and building models while acknowledging differences from reality.
Thinking ahead identifies inputs, outputs, preconditions, and caching strategies.
Procedural thinking breaks down problems into steps and sub-procedures. Logical
thinking focuses on decision points and their outcomes. Concurrent thinking evaluates
parallel tasks for efficiency, weighing benefits and trade-offs. Collectively, these
approaches improve problem-solving within computing.

T h e o r e t i c a l C o n c e p t s

T3

T5

T1

T4

T6

T2

Y13

Submission to Exam board

Final Adjustments

Evaluation and Video

Development and Testing

The work needs to be finally marked, marks shared (appealed if there are
reasonable grounds to an external marker) and the final mark and
marked coursework and authentication sheets along with a markers
commentary need to be provided to the exam board.

Computer Science

Iterative refinement ensures that each phase, from analysis to evaluation, meets
or exceeds marking criteria. By regularly reviewing requirements, refining designs,
improving implementation, rechecking results, and documenting progress,
addressing potential shortcomings early. Incorporating continuous feedback
fosters more robust solutions and stronger evidence of project progression.
Ultimately, this thoroughness significantly improves the likelihood of achieving
high marks across all assessment domains for computer science coursework. A
final review with an opportunity to fine tune will also help. Maximise marks.

Post-development testing involves verifying the final system against
requirements, identifying remaining bugs, and ensuring that all functions
work optimally. Evaluation measures user experience, performance, and
maintainability. Recording short video clips of system components simplifies
demonstration in meeting criteria for both these section, highlighting
functionality more effectively than written documentation. This visual proof
for clear, authentic evidence of practical programming tasks and system
deployment.

Iterative development and testing revolve around continuously refining software
through repeated cycles, ensuring functionality remains robust. With each
iteration, newly added features or improvements are tested alongside existing
components, catching potential errors early. This approach develops systematic
planning, code refinement, and problem-solving. Providing practical experience
using feedback to enhance program quality and confidence at each incremental
stage.

P r a c t i c a l S k i l l s

	Year 12 Theory CS Learning Journey
	Slide 1

	Year 12 Practical CS Learning Journey
	Slide 1

	Year 13 Theory CS Learning Journey
	Slide 1

	Year 13 Practical CS Learning Journey
	Slide 1

