
T3

T5

T1

T4

T6

T2

Y10
Ethics and legislation in Computer Science explore the impact of technology on

society and the planet. Topics include ethical concerns like privacy, digital divide,

and responsible data use; environmental issues such as e-waste, energy

consumption, and sustainability in computing; and legal frameworks like the Data

Protection Act, Computer Misuse Act, and copyright law. These themes promote

understanding of responsible and lawful technology use in a modern world.

Ethics & Legislation

System software ensures hardware and software function smoothly, incorporating

operating systems and utilities like file management and disk defragmentation.

Operating systems handle tasks such as process, memory, device, and user

management. System security focuses on protecting data and systems from threats

such as malware, hackers, and social engineering. Countermeasures include strong

passwords, firewalls, anti-virus software, encryption, regular updates, user access

levels, and frequent, robust backups.

System Security & Software

Networks and Protocols

Representing Data

Recap Memory and Storage

Recap Systems Architecture

Networks can be LANs or WANs, with performance shaped by factors

like bandwidth and connected devices. Client-server or peer-to-peer

setups require hardware—such as routers, switches, and NICs—to

function. The Internet spans global networks, aided by DNS, web

servers, and the Cloud. Star and Mesh topologies have pros and cons.

Wired or wireless connections rely on protocols, addresses, standards,

and encryption, often arranged in layered structures.

Computer Science

In computing, data is always stored in binary and measured in units from bits

through petabytes. Conversions between decimal, binary, and hexadecimal allow

arithmetic operations and representation of characters, images, and sound. File

sizes depend on color depth, resolution, sample rate, and bit depth. Storage

capacity calculations require understanding each unit’s size. Compression, whether

lossy or lossless, reduces file size while balancing quality and usability.

Computers need primary storage—RAM for working data, ROM for startup

routines—and deploy virtual memory by shifting overflow data to secondary

storage when RAM is full. Cache accelerates frequent tasks. Secondary storage

options—optical, magnetic, or solid-state—are chosen for capacity, speed,

portability, durability, reliability, and cost. Proper selection ensures efficient

data handling. Each device’s strengths suit particular scenarios, securing

essential data while balancing overall performance and expense.

The CPU’s primary role is to fetch, decode, and execute instructions using

components like the ALU, Control Unit, registers (MAR, MDR, Program Counter,

Accumulator), and cache, adhering to Von Neumann architecture. Data or addresses

may be stored differently within these registers. Performance varies with clock

speed, cache size, and core count. Embedded systems, possessing specialised

functions and limited resources, are widely used in everyday devices.

T h e o r e t i c a l C o n c e p t s

T3

T5

T1

T4

T6

T2

Y10
When concluding a development cycle, the team finalises the system, verifying all

components function properly. Rigorous testing is performed to identify flaws, ensuring

the product meets user expectations. Afterward, evaluators measure outcomes against

the original evaluation criteria, checking for fulfilment of requirements and user

satisfaction. This confirmation phase helps refine the final solution, guaranteeing its

reliability, usability, and adherence to specified goals with necessary adjustments.

Controlled Assessment Part 2

System development begins by analysing the problem, clarifying requirements, and

defining objectives. A carefully designed solution architecture guides the creation of

prototypes and initial builds. During implementation, teams frequently test features,

isolate errors, and refine components. As the project unfolds, iterative improvements

ensure alignment with user needs. Ultimately, this structured approach supports

reliable, effective software solutions that comprehensively meet its intended goals.

Controlled Assessment Part 1

Plan Design and Develop

Further Python Code

Simple Python Code

Introduction to Assembly

System development is the process of turning an idea into a

functioning solution, involving steps such as requirements analysis,

design, implementation, testing, and evaluation. Exploring how each

phase organises tasks, manages time, and ensures functionality. Helps

to learn to refine solutions based on feedback, addressing errors, and

ensuring systems meet user needs efficiently and effectively.

Computer Science

More advanced Python covers deeper programming concepts beyond basic syntax,

focusing on structured approaches such as defining and calling functions to manage

complex tasks. It explores handling data storage using SQLite databases for

persistent information, as well as reading and writing CSV files to manipulate

tabular data. This skill set emphasises code organisation, reliability, and

extensibility. This fosters problem-solving skills with real-world relevance.

Python fundamentals include essential coding concepts, such as using

variables and their data types, applying operators, and leveraging control

structures like loops and conditionals. learning to handle user input, process

data, and generate output. Basic concepts of functions, file handling, and code

readability also underpin effective problem-solving, enabling an accessible,

practical understanding of core programming principles, and debugging

methods.

Assembly language and the Little Man Computer (LMC) are crucial because they

demonstrate how low-level instructions directly control hardware through memory

manipulation. They illustrate core CPU operations like fetching, decoding, and

executing commands, teaching the fundamental concepts behind high -level

language translation. By exploring assembly code and LMC, one gains understanding

of computer architecture, registers, and the inner workings of modern systems.

P r a c t i c a l S k i l l s

T3

T5

T1

T4

T6

T2

Y11

High-level languages are easier to write and more user-friendly, while low-level

languages offer direct control over hardware. Translators convert code between these

levels, with compilers producing standalone executables, and interpreters translating

on-the-fly. Each method has benefits and drawbacks. IDEs further assist development,

providing editors, error diagnostics, run-time environments, and integrated

translators. These tools streamline coding, debugging, and testing, making

programming more efficient and effective overall.

Languages and IDEs

Boolean Logic

Robust Programming

Programming Fundamentals

Algorithms

This topic covers basic logic operators AND, OR, and NOT, their truth

tables, and how these gates are represented in logic diagrams.

Students need to recognise each gate symbol, combine operators to

create or edit complex diagrams, and interpret resulting outputs.

Solving problems involves applying logical operators, understanding

how inputs determine outputs, and producing correct truth tables.

Multiple gates can be linked for complex scenarios.

Computer Science

Defensive design uses input validation, anticipating misuse, and authentication to

confirm identity, with maintainability supported by subprograms, naming

conventions, indentation, and commenting. Testing ensures reliability, involving

iterative and final checks that detect syntax and logic errors. Programmers employ

normal, boundary, invalid, and erroneous data to refine algorithms and validate

modules. Test plans confirm correctness and help address potential flaws before

release and thoroughly document outcomes.

Effective software requires defensive design—validating inputs, anticipating misuse, and

authenticating users—supported by maintainable code with consistent naming,

subprograms, indentation, and comments. Rigorous testing ensures reliability, using

normal, boundary, invalid, and erroneous data. A range of data types, string

manipulation, file handling, arrays, records, SQL, and subprograms enable structured

solutions, while random number generation enhances functionality, supported by

thorough test plans, extensive documentation, and robust debugging.

Computational thinking principles—abstraction, decomposition, and algorithmic thinking—

help define and refine problems, while input-process-output structures guide solutions.

Designers use structure diagrams, pseudocode, and flowcharts to build, correct, and refine

algorithms. Syntax and logic errors must be identified and traced. Standard searches

(binary, linear) and sorts (bubble, merge, insertion) have defined steps and requirements,

and can be recognised and applied to data sets, with prerequisites considered thoroughly.

	Year 10 CS Learning Journey
	Slide 1

	Year 10 Practical Skills CS Learning Journey
	Slide 1

	Year 11 CS Learning Journey
	Slide 1

